1. The compound below contains an ester and an amide group.

Draw the structures of the organic products formed by the complete **alkaline** hydrolysis of this compound using NaOH(aq).

[4]

2. The table shows directing effects for different groups in the electrophilic substitution of aromatic compounds.

Directing effect	2- and 4- directing	3-directing
	-ОН	-NO ₂
Group	-NH ₂	-COCH₃
	-NHCOCH₃	-CN

i. Draw all organic products formed from monosubstitution reactions of the substituted benzene compounds shown below.

Reaction	Monosubstituted Product(s)
CN Cl ₂ AlCl ₃	
NHCOCH ₃ Cl ₂ AlCl ₃	

ii. The reactions of $C_6H_5NH_2$ are similar to the reactions of phenol.

Write an equation for the tri-substitution of $C_6H_5NH_2$ with chlorine.

Explain why chlorine	e reacts much mo	re readily with C ₆ F	l₅NH₂ than with be	nzene.	

3. Which compound is a secondary amide?

A	OH O
В	NH C
С	O H OH
D	HO C NH ₂

Your answer

[3]

4. The benzenediazonium ion, shown below, is stable at temperatures below 10 °C.

Above 10 °C, the benzenediazonium ion reacts with water to form phenol.

The reaction proceeds in a three-step mechanism.

- **Step 1** Elimination of nitrogen gas to form a carbocation.
- Step 2 Nucleophilic attack by water.
- **Step 3** Proton loss to form the organic product.

Complete the boxes below with intermediates and curly arrows to show the mechanism for this reaction.

5. A chemist is investigating compound **A**, shown below, as a potential organic intermediate.

Describe the type of stereoisomerism shown by compound $\bf A$ and suggest three reactions of compound $\bf A$, one for each of the **three** functional groups using reagents of your choice.

In your answer, show stereoisomers of compound **A**, your chosen reactants and conditions, and the structures for the organic products produced.

Mechanisms and equations are not required.

5.2.5 Organic Synthesis	PhysicsAndMathsTutor.con
	[6]
6. Aspirin tablets are used for pain relief.	
The structure of aspirin is shown below.	

Aspirin reacts with hot NaOH(aq), under reflux.

i. Draw a labelled diagram of suitable apparatus for reflux. ii. In this reaction, 1 mol of aspirin reacts with 3 mol of hot NaOH(aq).

Complete the equation for the reaction of aspirin with an excess of hot NaOH(aq).

Show structures for organic compounds.

7. This question is about reactions of acrolein, $H_2C=CHCHO$.

Complete the flowchart by filling in each box.

8. 1,3-dinitrobenzene is a solid at room temperature.					
A chemis	et prepares 1,3-dinitrobenzene as outlined below.				
Step 1 Step 2 Step 3	12.5 cm³ of nitrobenzene (density = 1.20 g cm⁻³) is refluxed with concentrated nitric acid in the presence of concentrated sulfuric acid as a catalyst. The mixture is cooled. Impure crystals of 1,3-dinitrobenzene appear. The impure crystals are purified to obtain pure 1,3-dinitrobenzene.				
The cher	The chemist obtains 15.0 g of pure 1,3-dinitrobenzene.				
Describe	how to purify the impure crystals in Step 3 .				

_____[3]

9. A student intends to synthesise compound **Z**, as shown in the flowchart below.

Compound Z

Plan this synthesis showing reagents, the structures of intermediate 1 and intermediate 2 , and equations.	

6.2.5 Organic Synthesis	PhysicsAndMathsTutor.com
	[6]
10. The structure of the painkiller paracetamol is shown below.	
Paracetamol	
Which functional groups are present in paracetamol?	
which functional groups are present in paracetamor?	
 A alcohol, amide B alcohol, arene, ketone, amine C phenol, amide D phenol, ketone, amine 	
Your answer	[1]
11(a). This question is about compounds that contain the carboxylic acid functional grounds	ıp.
The structure of 2-hydroxybutanoic acid is shown below.	
Н СН₃СН₂—С—СООН ОН	
2-hydroxybutanoic acid	

Fill in the flowchart for reactions involving 2-hydroxybutanoic acid.

(b). *A student intends to synthesise compound I.

Compound I

[4]

Plan a synthesis to prepare 9.36 g of compound I starting from 2-chloropropanoic acid, CH₃CHC/COOH. The overall percentage yield of compound I from 2-chloropropanoic acid is 64%.		
In your answer, include starting mass of 2-chloropropanoic acid, reagents, conditions and equations where appropriate.		
Additional answer space if required.		

[6]

12. This question is about the chemistry of aromatic compounds.

Compounds J, K and L, shown below, are structural isomers.

A two-stage synthesis of an amine from compound $\bf J$ is shown below.

i. Add the reagents for each stage of this synthesis.

[1]

ii. Fill in the equation for the reduction stage of this synthesis.

13. Which species could react as a nucleophile?

- 1 NH₃
- 2 OH-
- 3 CH₃NH₂
- **A** 1, 2 and 3
- B Only 1 and 2
- C Only 2 and 3
- D Only 1

Your answer [1]

14. 'Ozonolysis' is used in organic synthesis. Ozone breaks C=C bonds to form carbonyl compounds.

For example, the complete ozonolysis of methylbut-2-ene is shown below.

i. Draw the structures of the products you would expect from the ozonolysis of the **two** compounds below.

$$\overline{}$$

ii. The mechanism for ozonolysis takes place in several steps.

The curly arrows in the first step in the ozonolysis of methylbut-2-ene are shown below.

In the box, draw the structure(s) for the product(s) of this step.

[1]

15. The skeletal formula of an organic compound is shown below.

Which functional groups are present?

- A amide and alcohol
- B amide and carboxylic acid
- C amine and carboxylic acid
- **D** amine, ketone and alcohol

Your answer [1]